2.4.2 Leistungskurs

Inhaltsfeld Funktionen und Analysis (A)

Inhaltliche Schwerpunkte

Funktionen als mathematische Modelle

Fortführung der Differentialrechnung

Grundverständnis des Integralbegriffs

Integralrechnung

Kompetenzerwartungen

Die Schülerinnen und Schüler

- führen Extremalprobleme durch Kombination mit Nebenbedingungen auf Funktionen einer Variablen zurück und lösen diese,
- verwenden notwendige Kriterien und Vorzeichenwechselkriterien sowie weitere hinreichende Kriterien zur Bestimmung von Extrem- und Wendepunkten,
- beschreiben das Krümmungsverhalten des Graphen einer Funktion mithilfe der 2. Ableitung,
- interpretieren Parameter von Funktionen im Kontext und untersuchen ihren Einfluss auf Eigenschaften von Funktionenscharen,
- bestimmen Parameter einer Funktion mithilfe von Bedingungen, die sich aus dem Kontext ergeben ("Steckbriefaufgaben"),
- bilden die Ableitungen weiterer Funktionen:
 - Potenzfunktionen mit rationalen Exponenten,
 - natürliche Exponentialfunktion,
 - Exponentialfunktionen mit beliebiger Basis,
 - natürliche Logarithmusfunktion,
- deuten die Ableitung mithilfe der Approximation durch lineare Funktionen,
- führen Eigenschaften von zusammengesetzten Funktionen (Summe, Produkt, Verkettung) argumentativ auf deren Bestandteile zurück,
- wenden die Produkt- und Kettenregel zum Ableiten von Funktionen an,
- beschreiben die Eigenschaften von Exponentialfunktionen und begründen die besondere Eigenschaft der natürlichen Exponentialfunktion,

- nutzen die natürliche Logarithmusfunktion als Umkehrfunktion der natürlichen Exponentialfunktion,
- verwenden Exponentialfunktionen zur Beschreibung von Wachstums- und Zerfallsvorgängen und vergleichen die Qualität der Modellierung exemplarisch mit einem begrenzten Wachstum,
- interpretieren Produktsummen im Kontext als Rekonstruktion des Gesamtbestandes oder Gesamteffektes einer Größe,
- deuten die Inhalte von orientierten Flächen im Kontext,
- skizzieren zu einer gegebenen Randfunktion die zugehörige Flächeninhaltsfunktion,
- erläutern und vollziehen an geeigneten Beispielen den Übergang von der Produktsumme zum Integral auf der Grundlage eines propädeutischen Grenzwertbegriffs,
- erläutern den Zusammenhang zwischen Änderungsrate und Integralfunktion,
- bestimmen Stammfunktionen ganzrationaler Funktionen,
- nutzen die natürliche Logarithmusfunktion als Stammfunktion der Funktion $x \to \frac{1}{x}$,
- nutzen die Intervalladditivität und Linearität von Integralen,
- begründen den Hauptsatz der Differential- und Integralrechnung unter Verwendung eines anschaulichen Stetigkeitsbegriffs,
- bestimmen Integrale numerisch und mithilfe von gegebenen oder Nachschlagewerken entnommenen Stammfunktionen,
- ermitteln den Gesamtbestand oder Gesamteffekt einer Größe aus der Änderungsrate oder der Randfunktion,
- bestimmen Flächeninhalte und Volumina von Körpern, die durch die Rotation um die Abszisse entstehen, mithilfe von bestimmten und uneigentlichen Integralen.

Inhaltsfeld Analytische Geometrie und Lineare Algebra (G)

Inhaltliche Schwerpunkte

Lineare Gleichungssysteme

Darstellung und Untersuchung geometrischer Objekte

Lagebeziehungen und Abstände

Skalarprodukt

Kompetenzerwartungen

Die Schülerinnen und Schüler

- stellen lineare Gleichungssysteme in Matrix-Vektor-Schreibweise dar,
- beschreiben den Gauß-Algorithmus als Lösungsverfahren für lineare Gleichungssysteme,
- wenden den Gauß-Algorithmus ohne digitale Werkzeuge auf Gleichungssysteme mit maximal drei Unbekannten an, die mit geringem Rechenaufwand lösbar sind,
- interpretieren die Lösungsmenge von linearen Gleichungssystemen,
- stellen Geraden in Parameterform dar,
- interpretieren den Parameter von Geradengleichungen im Sachkontext,
- stellen Ebenen in Koordinaten- und in Parameterform dar,
- stellen geradlinig begrenzte Punktmengen in Parameterform dar,
- untersuchen Lagebeziehungen zwischen Geraden und zwischen Geraden und Ebenen,
- berechnen Schnittpunkte von Geraden sowie Durchstoßpunkte von Geraden mit Ebenen und deuten sie im Sachkontext,
- deuten das Skalarprodukt geometrisch und berechnen es,
- untersuchen mithilfe des Skalarprodukts geometrische Objekte und Situationen im Raum (Orthogonalität, Winkel- und Längenberechnung),
- stellen Ebenen in Normalenform dar und nutzen diese zur Orientierung im Raum,
- bestimmen Abstände zwischen Punkten, Geraden und Ebenen.

Inhaltsfeld Stochastik (S)

Inhaltliche Schwerpunkte

Kenngrößen von Wahrscheinlichkeitsverteilungen

Binomialverteilung und Normalverteilung

Testen von Hypothesen

Stochastische Prozesse

Kompetenzerwartungen

Die Schülerinnen und Schüler

• untersuchen Lage- und Streumaße von Stichproben,

- erläutern den Begriff der Zufallsgröße an geeigneten Beispielen,
- bestimmen den Erwartungswert μ und die Standardabweichung σ von Zufallsgrößen und treffen damit prognostische Aussagen,
- verwenden Bernoulliketten zur Beschreibung entsprechender Zufallsexperimente,
- erklären die Binomialverteilung einschließlich der kombinatorischen Bedeutung der Binomialkoeffizienten und berechnen damit Wahrscheinlichkeiten,
- beschreiben den Einfluss der Parameter n und p auf Binomialverteilungen und ihre graphische Darstellung,
- nutzen die σ -Regeln für prognostische Aussagen,
- nutzen Binomialverteilungen und ihre Kenngrößen zur Lösung von Problemstellungen,
- interpretieren Hypothesentests bezogen auf den Sachkontext und das Erkenntnisinteresse,
- beschreiben und beurteilen Fehler 1. und 2. Art,
- unterscheiden diskrete und stetige Zufallsgrößen und deuten die Verteilungsfunktion als Integralfunktion,
- untersuchen stochastische Situationen, die zu annähernd normalverteilten Zufallsgrößen führen,
- beschreiben den Einfluss der Parameter μ und σ auf die Normalverteilung und die graphische Darstellung ihrer Dichtefunktion (Gauß'sche Glockenkurve),
- beschreiben stochastische Prozesse mithilfe von Zustandsvektoren und stochastischen Übergangsmatrizen,
- verwenden die Matrizenmultiplikation zur Untersuchung stochastischer Prozesse (Vorhersage nachfolgender Zustände, numerisches Bestimmen sich stabilisierender Zustände).