www.plusplanet.de
Schulinfos von F. Töns


21.09.2022

Klausurthemen:
• LGS per Hand und mit GTR lösen können
• Aus zwei bzw. drei Punkten eine Geraden- bzw. Ebenengleichung in Parameterform aufstellen.
• Lagebeziehung "Gerade-Gerade", "Gerade-Ebene": Unterschiedliche Lagebeziehungen identifizieren können und ggf. den Schnittpunkt ausrechnen können
• Skalarprodukt: Falls das Skalarprodukt zweier Vektoren gleich Null ist, so sind die beiden Vektoren orthogonal
• Länge von Vektoren / Abstand zweier Punkten
• Grundlagen wie Mittelpunkt einer Strecke, Vokabeln wie Aufpunkt, Ortsvektor, Stützvektor, Richtungsvektor, Spannvektor, Gegenvektor, Nullvektor, Verbindungsvektor
• Geometrische Bedeutung der Vektoraddition bzw. Multiplikation eines Vektors mit einer Zahl
• Aufgaben zu einer geometrische Situation. Z.B.
• - Gegeben ist eine Pyramide mit den Eckpunkten bla bla
• - Von der Pyramide wird die Spitze abgeschnitten, die Schnittkante wird durch die Ebene E ... festgelegt.
• - Berechne die Schnittpunkte auf den Pyramidenkanten
• - Berechne den Abstand der Pyramidenspitze von der Schnittebene Allgemeine Abstände sind LK-Stoff
• - Weise nach: Die Schnittfläche ist ein Trapez / Drachenviereck / Dreieck / Quadrat etc.
• - Berechne die Größe der Schnittfläche
• Aufgabe 6 und 7 aus der alten Klausur

Übungstipps für die Klausur:

http://www.plusplanet.de/loesungsarchiv/index.html#anker3_1_1_1
http://www.plusplanet.de/loesungsarchiv/index.html#anker3_1_1_2

http://www.plusplanet.de/loesungsarchiv/index.html#anker3_2_1_1
http://www.plusplanet.de/loesungsarchiv/index.html#anker3_2_1_2
http://www.plusplanet.de/loesungsarchiv/index.html#anker3_2_1_3
http://www.plusplanet.de/loesungsarchiv/index.html#anker3_2_1_4
http://www.plusplanet.de/loesungsarchiv/index.html#anker3_2_1_5

http://www.plusplanet.de/loesungsarchiv/index.html#anker3_2_2_1
http://www.plusplanet.de/loesungsarchiv/index.html#anker3_2_2_2
http://www.plusplanet.de/loesungsarchiv/index.html#anker3_2_2_3

http://www.plusplanet.de/loesungsarchiv/index.html#anker3_3_1_1 (Ohne Winkel, wir haben nur die Überprüfung auf Rechtwinkligkeit gemacht)
http://www.plusplanet.de/loesungsarchiv/index.html#anker3_3_1_4

Übungstipps aus dem Buch:
• S198 Nr4,5,7,8,9,10


25.06.2022
Lösungen zu den Buchaufgaben:
LS_GK_S155_Nr3_Vektoren.jpg

20.06.2022
20220617_LGS_aufgaben.jpg.output.jpg

30.05.2022
Punkte im 3D-Koordinatensystem
1. Zeichne ein C in ein 2D-Koordinatensystem und identifiziere die 2D-Punkte. Ändere den Koordinatenursprung.
2. Füge einen "3D-Look" hinzu und identifiziere erneut 3D-Punkte
3. Zeichne das 3D-GBG-Logo und versuche alle Eckpunkte zu "benennen"
20160615_Vektorbuchstaben.jpg
Kaestchenalphabet_cropped_tn.png
20200616_3d_buchstabendemo_tn.jpg


13.05.2022
Themen der Klausur am 20.05.2022:

Schwerpunktmäßiges Thema:
Funktionsuntersuchung von zusammengesetzten Funktionen
(Und am Rande: Grundlagen der Vektorrechnung im 2D-Koordinatensystem)

Details:
• Allgemeiner Umgang mit Funktionen des Typs f(x) = BLA · e hoch BLUB (wobei BLA und BLUB ganzrationale Funktionen sind). Mit "allgemeiner Umgang" sind z.B. alle Dinge gemeint, die wir in der MindMap zusammengetragen haben (Funktionswerte, Nullstellen, Extrem- und Wendestellen, Monotonie- und Krümmungsverhalten, Fernverhalten, Symmetrie, Flächenberechnungen usw.)
• Ableitungsregeln Produktregel und Kettenregel souverän beherrschen.
• Gleichungen mit Hilfe des Logarithmus lösen können
• Stammfunktionen bestimmen können durch Betrachtung des Ableitungsmechanismus
• Innermathematische Fragestellungen sowie Anwendungsaufgaben.

Selbstverständlich sind alle Aspekte aus der vorherigen Klausur relevant (hier nur nochmal hineinkopiert. Bitte berücksichtigt, dass manche der alten Themen nun verallgemeinert vorkommen):

• Integrale mit Hilfe von Stammfunktionen berechnen können
• Integrale im Sachzusammenhang (z.B. mit einer Geschwindigkeitsfunktion auf die Strecke schließen / Aufgabe "Freefalltower")
• Flächenberechnungen mit Integrale (Fläche zwischen Funktion und x-Achse, Fläche zwischen zwei Funktionen (dabei ggf. erst Schnittstellen bestimmen!))
• Rechenregeln für Integrale sinnvoll anwenden können
• Integralgleichungen ( z.b. ∫(von 2 bis t) x² dx = 10 nach t auflösen können)
• Mittelwerte von Funktionen mit Hilfe von Integralen

• Potenzgesetze
• Exponentialfunktionen der Form f(x) = c·a hoch x : Zeichnen können, Zeichnungen einer Funktion zuordnen können, In welchen Fällen steigt oder fällt die Funktion monoton?
• natürliche Exponentialfunktion f(x) = e hoch x : Ableiten und Integrieren können.
• Exponentialgleichungen mit dem Logarithmus lösen können.
• Ableiten von Exponentialfunktionen der Form f(x) = c·a hoch x indem man die Basis zu e hoch ln(a) umschreibt und dann ableitet.
• Steckbriefaufgaben für Exponentialfunktionen (vgl. Aufgabentyp "abkühlendes Wasser im Topf")
• Anwendungsaufgaben (Vgl. Halbwertszeit, Verdopplungszeit)
• Neue Ableitungsregel "Produktregel"

Allgemein müssen natürlich Grundlagen beherrscht werden:
• Hoch-, Tief-, Sattel- und Wendepunkte bestimmen können
• Tangentengleichungen finden können
usw. usw.

Vektorrechnung:
Vorderseite des ausgeteilten Zettels (unterstrichene Vokabeln verstehen) bis einschließlich "Multiplikation eines Vektors mit einer Zahl" auf der Rückseite.
• Begriffe Nullvektor, Ortsvektor, Nullvektor, Verbindungsvektor verstehen
• Vektoren addieren
• Vektoren mit einer Zahl multiplizieren
• Wissen, dass eine Addition zweier Vektoren geometrisch der "Direktvektor vom Start zum Ziel" ist, wenn man die beteiligten Vektoren hintereinander legt.

Übungen:
Arbeitsblatt "Freefalltower"

/!\ Die Aufgabenmengen aus dem Lösungsarchiv spiegeln nicht die Gewichtung der Themen in der Klausur wider! (d.h. Es gibt zwar viele Exponentialgleichungen-Links aus dem Lösungsarchiv, aber das heißt nicht, dass die Klausur einen großen Anteil an Exponentialgleichungen enthalten wird)

Exponentialgleichungen
http://www.plusplanet.de/loesungsarchiv/index.html#anker1_1_4_2
http://www.plusplanet.de/loesungsarchiv/index.html#anker1_1_4_3
http://www.plusplanet.de/loesungsarchiv/index.html#anker1_1_4_4
http://www.plusplanet.de/loesungsarchiv/index.html#anker1_1_4_5
http://www.plusplanet.de/loesungsarchiv/index.html#anker1_1_4_7
http://www.plusplanet.de/loesungsarchiv/index.html#anker1_1_4_8
http://www.plusplanet.de/loesungsarchiv/index.html#anker1_1_4_9
http://www.plusplanet.de/loesungsarchiv/index.html#anker1_1_4_10
http://www.plusplanet.de/loesungsarchiv/index.html#anker1_1_4_11
http://www.plusplanet.de/loesungsarchiv/index.html#anker1_1_4_12

Produktregel
http://www.plusplanet.de/loesungsarchiv/index.html#anker1_2_2_1
http://www.plusplanet.de/loesungsarchiv/index.html#anker1_2_2_2
http://www.plusplanet.de/loesungsarchiv/index.html#anker1_2_2_3

Kettenregel
http://www.plusplanet.de/loesungsarchiv/index.html#anker1_2_3_1 :neu:
http://www.plusplanet.de/loesungsarchiv/index.html#anker1_2_3_2 :neu:
http://www.plusplanet.de/loesungsarchiv/index.html#anker1_2_3_3 :neu:

Ableitungsregeln kombiniert
http://www.plusplanet.de/loesungsarchiv/index.html#anker1_2_4_1 :neu:
http://www.plusplanet.de/loesungsarchiv/index.html#anker1_2_4_2 :neu:
http://www.plusplanet.de/loesungsarchiv/index.html#anker1_2_4_3 :neu:

Integrieren
http://www.plusplanet.de/loesungsarchiv/index.html#anker1_3_2_1
http://www.plusplanet.de/loesungsarchiv/index.html#anker1_3_2_2
http://www.plusplanet.de/loesungsarchiv/index.html#anker1_3_2_3
http://www.plusplanet.de/loesungsarchiv/index.html#anker1_3_2_3 :neu:
http://www.plusplanet.de/loesungsarchiv/index.html#anker1_3_2_5

Exponentialfunktionen untersuchen
http://www.plusplanet.de/loesungsarchiv/index.html#anker1_4_3_1 :neu:
http://www.plusplanet.de/loesungsarchiv/index.html#anker1_4_3_2 :neu:
http://www.plusplanet.de/loesungsarchiv/index.html#anker1_4_3_3 :neu:
http://www.plusplanet.de/loesungsarchiv/index.html#anker1_4_3_4 :neu:
http://www.plusplanet.de/loesungsarchiv/index.html#anker1_4_3_5
http://www.plusplanet.de/loesungsarchiv/index.html#anker1_4_3_6
http://www.plusplanet.de/loesungsarchiv/index.html#anker1_4_3_7 :neu:
http://www.plusplanet.de/loesungsarchiv/index.html#anker1_4_3_8 :neu:
http://www.plusplanet.de/loesungsarchiv/index.html#anker1_4_3_9 :neu:


Steckbriefaufgaben zu Exponentialfunktionen
http://www.plusplanet.de/loesungsarchiv/index.html#anker1_5_2_1
http://www.plusplanet.de/loesungsarchiv/index.html#anker1_5_2_2
http://www.plusplanet.de/loesungsarchiv/index.html#anker1_5_2_3
http://www.plusplanet.de/loesungsarchiv/index.html#anker1_5_2_4
http://www.plusplanet.de/loesungsarchiv/index.html#anker1_5_2_5



13.05.2022
Aufgabe zur Stunde am Freitag:
20220512_billardtisch.jpg

12.05.2022
Aufgabe für die Stunde am Donnerstag:
20220508_funktion_im_sachzusammenhang.pdf

09.05.2022
Aufgabe für die Stunde am Montag:
20220508_funktion_im_sachzusammenhang_schmal.jpg

05.05.2022
Tafelbild der letzten Stunde
20220503_mindmap_bw.jpg

28.04.2022
Aufgabe für heute:
20220428_nachbereitung.jpg
(Im odt-Format: 20220428_nachbereitung.odt )


26.04.2022
Aufgabe für heute:
20220425_ana_e_fkt_untersuchung.jpg

17.03.2022
Hausaufgabe: 20220316_234931.jpg.output.jpg
Textaufgabe: 20220317_000155.jpg.output.jpg

15.03.2022
Themen der Klausur am 22.03.2022:

Schwerpunktmäßig:
• Integralrechnung
• Exponentialfunktionen

Details:
• Integrale mit Hilfe von Stammfunktionen berechnen können
• Integrale im Sachzusammenhang (z.B. mit einer Geschwindigkeitsfunktion auf die Strecke schließen / Aufgabe "Freefalltower")
• Flächenberechnungen mit Integrale (Fläche zwischen Funktion und x-Achse, Fläche zwischen zwei Funktionen (dabei ggf. erst Schnittstellen bestimmen!))
• Rechenregeln für Integrale sinnvoll anwenden können
• Integralgleichungen ( z.b. ∫(von 2 bis t) x² dx = 10 nach t auflösen können)
• Mittelwerte von Funktionen mit Hilfe von Integralen

• Potenzgesetze
• Exponentialfunktionen der Form f(x) = c·a hoch x : Zeichnen können, Zeichnungen einer Funktion zuordnen können, In welchen Fällen steigt oder fällt die Funktion monoton?
• natürliche Exponentialfunktion f(x) = e hoch x : Ableiten und Integrieren können.
• Exponentialgleichungen mit dem Logarithmus lösen können.
• Ableiten von Exponentialfunktionen der Form f(x) = c·a hoch x indem man die Basis zu e hoch ln(a) umschreibt und dann ableitet.
• Steckbriefaufgaben für Exponentialfunktionen (vgl. Aufgabentyp "abkühlendes Wasser im Topf")
• Anwendungsaufgaben (Vgl. Halbwertszeit, Verdopplungszeit)
• Neue Ableitungsregel "Produktregel"

Allgemein müssen natürlich Grundlagen beherrscht werden:
• Hoch-, Tief-, Sattel- und Wendepunkte bestimmen können
• Tangentengleichungen finden können
usw. usw.

Übungen:
Arbeitsblatt "Freefalltower"

/!\ Die Aufgabenmengen aus dem Lösungsarchiv spiegeln nicht die Gewichtung der Themen in der Klausur wider! (d.h. Es gibt zwar viele Exponentialgleichungen-Links aus dem Lösungsarchiv, aber das heißt nicht, dass die Klausur einen großen Anteil an Exponentialgleichungen enthalten wird)

Exponentialgleichungen
http://www.plusplanet.de/loesungsarchiv/index.html#anker1_1_4_2
http://www.plusplanet.de/loesungsarchiv/index.html#anker1_1_4_3
http://www.plusplanet.de/loesungsarchiv/index.html#anker1_1_4_4
http://www.plusplanet.de/loesungsarchiv/index.html#anker1_1_4_5
http://www.plusplanet.de/loesungsarchiv/index.html#anker1_1_4_7
http://www.plusplanet.de/loesungsarchiv/index.html#anker1_1_4_8
http://www.plusplanet.de/loesungsarchiv/index.html#anker1_1_4_9
http://www.plusplanet.de/loesungsarchiv/index.html#anker1_1_4_10
http://www.plusplanet.de/loesungsarchiv/index.html#anker1_1_4_11
http://www.plusplanet.de/loesungsarchiv/index.html#anker1_1_4_12

Produktregel
http://www.plusplanet.de/loesungsarchiv/index.html#anker1_2_2_1
http://www.plusplanet.de/loesungsarchiv/index.html#anker1_2_2_2
http://www.plusplanet.de/loesungsarchiv/index.html#anker1_2_2_3

Integrieren
http://www.plusplanet.de/loesungsarchiv/index.html#anker1_3_2_1
http://www.plusplanet.de/loesungsarchiv/index.html#anker1_3_2_2
http://www.plusplanet.de/loesungsarchiv/index.html#anker1_3_2_3
http://www.plusplanet.de/loesungsarchiv/index.html#anker1_3_2_5

Exponentialfunktionen untersuchen
http://www.plusplanet.de/loesungsarchiv/index.html#anker1_4_3_5
http://www.plusplanet.de/loesungsarchiv/index.html#anker1_4_3_6

Steckbriefaufgaben zu Exponentialfunktionen
http://www.plusplanet.de/loesungsarchiv/index.html#anker1_5_2_1
http://www.plusplanet.de/loesungsarchiv/index.html#anker1_5_2_2
http://www.plusplanet.de/loesungsarchiv/index.html#anker1_5_2_3
http://www.plusplanet.de/loesungsarchiv/index.html#anker1_5_2_4
http://www.plusplanet.de/loesungsarchiv/index.html#anker1_5_2_5





17.02.2022
Aufgabe für den Unterrichtsausfall wegen des Sturms:

Im Buch auf S84 Aufgabe 1.
/!\ Die Aufgabe soll ohne GTR gelöst werden! Damit ihr "nachweislich echt nachgedacht" habt, schreibt bitte zu jeder Entscheidung einen Stichpunkt auf.
Beispiel: G1 gehört zu f1, da 2 hoch 1 gleich 2 ist und das nur bei G1 zutrifft.
(Jetzt fehlen noch 7 Sätzchen von Euch. Insbesondere bei die Begründungen bei den Ableitungen interessieren mich.)


03.02.2022
20220201_zusammen.jpg

25.11.2021
Themen für die Klausur am 03.12.2021

Die Themen aus der ersten Klausur können komplett(!) drankommen. Seit der letzten Klausur haben wir aber die zwei Themen
• Funktionenscharen
• Extremwertaufgaben
intensiver behandelt. Daher werden die Inhalte der ersten Klausur schwerpunktmäßig aus der Perspektive "Funktionenscharen" und "Extremwertaufgaben" behandelt.

Zusätzlich werden wir Ansätze der Integralrechnung behandeln. Dazu gehört:
• Wissen, dass Flächen zwischen Funktion und x-Achse eine Bedeutung in einem Sachzusammenhang haben und Flächen unterhalb der x-Achse "negativ gezählt" werden. Dabei hilft es, wenn man die Einheiten an x- und y-Achse multipliziert, um dann zu sehen, dass z.B. bei "Sekunden mal Meter pro Sekunde" die Sekunden weggekürzt werden können und die Flächenmaßzahl dann im Sachzusammenhang in "Meter" (und nicht etwa Quadratmeter) gemessen wird.
• Beispiele aus dem Unterricht verstehen: Aufzug auf S50 oben, S51 Nr1, S52 Nr3
• Die Integralschreibweise selbst nutzen und verstehen können.
• Integrale bestimmen können, indem man Dreiecks- oder Rechtecksflächen nutzt.
• Integrale mit dem GTR im Grafikmenü und im Rechenmenü bestimmen können.
Hinweis: Eure Nachhilfelehrerin, ein Lernvideo oder ein Schüler aus einem anderen Mathekurs wird euch vielleicht erklären wollen, dass man zur Berechnung von Integralen Stammfunktionen braucht, die man durch "Rückwärts ableiten" usw. bestimmt. So weit sind wir noch nicht! Im Buch werde ich nur die Inhalte bis Seite 57 drannehmen!

  • Grundlagen: Bruchrechnung, Potenzregeln
  • Nullstellen von Funktionen bestimmen (x ausklammern, SvNP und quadratische Gleichungen beherrschen!!!)
  • Ableitungen bilden können (Vorsicht: Funktion ggf. vorher in Standardform bringen!)
  • Ableitungen zu einer gegebenen Funktion skizzieren oder auswählen können.
  • Extrempunkte bestimmen mit anständiger Abhandlung der notwendigen und hinreichenden Bedingung
  • Monotonietabelle erstellen und interpretieren können
  • Wendepunkte bestimmen mit anständiger Abhandlung der notwendigen und hinreichenden Bedingung
  • Krümmungstabelle erstellen und interpretieren können
  • Fernverhalten bei ganzrationalen Funktionen
  • Symmetrieuntersuchung (Achsensym. und Punktsym. - durch Betrachtung der Exponenten bei einer ganzrationalen Funktion in Standardform) und ggf. Ausnutzung von Symmetrie
  • Steckbriefaufgaben: Bedingungen aufstellen können und die dabei entstehenden LGS mit dem GTR lösen können
  • Funktionenscharen: prinzipiell alle obigen Dinge auch bei Funktionen mit Parameter durchführen können.
  • Umgang mit dem GTR: Funktionen zeichnen können (Achtung: Betrachtungsfenster einstellen können!) Funktionswerte mit der Trace-Funktion ablesen können, Nullstellen, Hoch- und Tiefpunkte bestimmen können.


Übungstipps zu Extremwertaufgaben:
Außer den im Unterricht gerechneten Aufgaben gibt es auf S28 und S29 einige Extremwertaufgaben, an denen man sich abarbeiten kann. Wichtig ist, dass ihr immer das "Rezept" einhaltet:
• Was soll minimal/maximal werden?
• Welche Nebenbedingungen gibt es? Diese formt man nach einer Variablen um.
• Zielfunktion aufstellen, die nur noch von einer einzigen Variablen abhängt (durch Einsetzen der Nebenbedingung).
• Extremwert berechnen (Je nach Aufgabenstellung mit GTR oder "per Hand").

Übungstipps aus dem Lösungsarchiv:
Alle Lösungsarchv-Tipps zur letzten Klausur sind unverändert gültig. Hinzu kommt:

Scharen: Alle "Funktionenschar"-Aufgaben aus dem Lösungsarchiv sind nun für uns lösbar - mit Ausnahme der Aufgabenteile zu "Ortskurven": Die Frage nach Ortskurven könnt ihr ignorieren!
http://www.plusplanet.de/loesungsarchiv/index.html#anker1_4_2_1
http://www.plusplanet.de/loesungsarchiv/index.html#anker1_4_2_2
http://www.plusplanet.de/loesungsarchiv/index.html#anker1_4_2_3
http://www.plusplanet.de/loesungsarchiv/index.html#anker1_4_2_4
http://www.plusplanet.de/loesungsarchiv/index.html#anker1_4_2_5
http://www.plusplanet.de/loesungsarchiv/index.html#anker1_4_2_6
http://www.plusplanet.de/loesungsarchiv/index.html#anker1_4_2_7
http://www.plusplanet.de/loesungsarchiv/index.html#anker1_4_2_8
http://www.plusplanet.de/loesungsarchiv/index.html#anker1_4_2_9



09.11.2021
Fahrplan für heute:
• Notenbesprechung
• Aufgabe "Ziegenwiese Teil 1"
• Aufgabe "Ziegenwiese Teil 2"

Teil 1: Für eine Wiese soll ein rechteckiger Bereich an einem Fluss eingezäunt werden (s. Zeichnung). Es stehen 100m Zaun zur Verfügung. Der Zaun muss nur an drei Seiten des Rechtecks angebracht werden (der Fluss ist eine natürliche Grenze)
a) Wenn man a=10m wählt, so ergibt sich automatisch b=80m. Berechne die Größe der entstehenden Fläche.
b) Berechne die Fläche für a=20m und a=30m.
c) Finde einen Weg zur Ermittlung desjenigen Wertes für a, so dass der rechteckige Bereich maximal groß wird!

Teil 2: Für eine Wiese soll ein rechteckiger Bereich an einem Fluss eingezäunt werden (s. Zeichnung). Der Zaun muss nur an drei Seiten des Rechtecks angebracht werden (der Fluss ist eine natürliche Grenze). Diesmal ist die Aufgabe "umgedreht": Das Rechteck soll exakt 1000m² groß werden, wobei der Zaunverbrauch möglichst gering gehalten werden soll.
a) Wählt man a=20m so muss b=50m sein, damit man auf 1000m² Fläche kommt. Gib den Zaunverbrauch an.
b) Gib den Wert für b und den Zaunverbrauch an, wenn man für a die Werte a=25, a=30 bzw. a=35 wählt.
c) Finde einen Weg zur Ermittlung desjenigen Wertes für a, so dass der Zaunverbrauch möglichst gering ist.





29.09.2021
Themen für die Klausur am 08.10.2021

  • Grundlagen: Bruchrechnung, Potenzregeln
  • Nullstellen von Funktionen bestimmen (x ausklammern, SvNP und quadratische Gleichungen beherrschen!!!)
  • Ableitungen bilden können (Vorsicht: Funktion ggf. vorher in Standardform bringen!)
  • Ableitungen zu einer gegebenen Funktion skizzieren oder auswählen können.
  • Extrempunkte bestimmen mit anständiger Abhandlung der notwendigen und hinreichenden Bedingung
  • Monotonietabelle erstellen und interpretieren können
  • Wendepunkte bestimmen mit anständiger Abhandlung der notwendigen und hinreichenden Bedingung
  • Krümmungstabelle erstellen und interpretieren können
  • Fernverhalten bei ganzrationalen Funktionen
  • Symmetrieuntersuchung (Achsensym. und Punktsym. - durch Betrachtung der Exponenten bei einer ganzrationalen Funktion in Standardform) und ggf. Ausnutzung von Symmetrie
  • Steckbriefaufgaben: Bedingungen aufstellen können und die dabei entstehenden LGS mit dem GTR lösen können
  • Funktionenscharen: prinzipiell alle obigen Dinge auch bei Funktionen mit Parameter durchführen können.
  • Umgang mit dem GTR: Funktionen zeichnen können (Achtung: Betrachtungsfenster einstellen können!) Funktionswerte mit der Trace-Funktion ablesen können, Nullstellen, Hoch- und Tiefpunkte bestimmen können.

Übungstipps aus dem Lösungsarchiv:

Grundlagen Termumformungen:
http://www.plusplanet.de/loesungsarchiv/index.html#anker1_1_1_1
http://www.plusplanet.de/loesungsarchiv/index.html#anker1_1_1_2
http://www.plusplanet.de/loesungsarchiv/index.html#anker1_1_1_3
http://www.plusplanet.de/loesungsarchiv/index.html#anker1_1_1_4
http://www.plusplanet.de/loesungsarchiv/index.html#anker1_1_1_5
http://www.plusplanet.de/loesungsarchiv/index.html#anker1_1_1_6

Grundlagen lineare Gleichungen:
http://www.plusplanet.de/loesungsarchiv/index.html#anker1_1_2_1
http://www.plusplanet.de/loesungsarchiv/index.html#anker1_1_2_2
http://www.plusplanet.de/loesungsarchiv/index.html#anker1_1_2_3
http://www.plusplanet.de/loesungsarchiv/index.html#anker1_1_2_4
http://www.plusplanet.de/loesungsarchiv/index.html#anker1_1_2_5
http://www.plusplanet.de/loesungsarchiv/index.html#anker1_1_2_6

Grundlagen quadratische Gleichungen:
http://www.plusplanet.de/loesungsarchiv/index.html#anker1_1_3_1
http://www.plusplanet.de/loesungsarchiv/index.html#anker1_1_3_2
http://www.plusplanet.de/loesungsarchiv/index.html#anker1_1_3_3

Ableiten
http://www.plusplanet.de/loesungsarchiv/index.html#anker1_2_1_1
http://www.plusplanet.de/loesungsarchiv/index.html#anker1_2_1_2
http://www.plusplanet.de/loesungsarchiv/index.html#anker1_2_1_3
http://www.plusplanet.de/loesungsarchiv/index.html#anker1_2_1_4

Funktionsuntersuchungen
http://www.plusplanet.de/loesungsarchiv/index.html#anker1_4_1_1
http://www.plusplanet.de/loesungsarchiv/index.html#anker1_4_1_2
http://www.plusplanet.de/loesungsarchiv/index.html#anker1_4_1_3
http://www.plusplanet.de/loesungsarchiv/index.html#anker1_4_1_4
http://www.plusplanet.de/loesungsarchiv/index.html#anker1_4_1_5
http://www.plusplanet.de/loesungsarchiv/index.html#anker1_4_1_6
http://www.plusplanet.de/loesungsarchiv/index.html#anker1_4_1_7
http://www.plusplanet.de/loesungsarchiv/index.html#anker1_4_1_8
http://www.plusplanet.de/loesungsarchiv/index.html#anker1_4_1_9
http://www.plusplanet.de/loesungsarchiv/index.html#anker1_4_1_10
http://www.plusplanet.de/loesungsarchiv/index.html#anker1_4_1_11
http://www.plusplanet.de/loesungsarchiv/index.html#anker1_4_1_12
http://www.plusplanet.de/loesungsarchiv/index.html#anker1_4_1_13
http://www.plusplanet.de/loesungsarchiv/index.html#anker1_4_1_15
http://www.plusplanet.de/loesungsarchiv/index.html#anker1_4_1_16
http://www.plusplanet.de/loesungsarchiv/index.html#anker1_4_1_17
http://www.plusplanet.de/loesungsarchiv/index.html#anker1_4_1_18

Steckbriefaufgaben
http://www.plusplanet.de/loesungsarchiv/index.html#anker1_5_1_1
http://www.plusplanet.de/loesungsarchiv/index.html#anker1_5_1_2
http://www.plusplanet.de/loesungsarchiv/index.html#anker1_5_1_3
http://www.plusplanet.de/loesungsarchiv/index.html#anker1_5_1_4
http://www.plusplanet.de/loesungsarchiv/index.html#anker1_5_1_5

Scharen:
http://www.plusplanet.de/loesungsarchiv/index.html#anker1_4_2_3
:neu: 06.10.2021: Folgende Aufgaben sind für die Klausur noch zu knifflig und müssen nicht geübt werden:
http://www.plusplanet.de/loesungsarchiv/index.html#anker1_4_2_4
http://www.plusplanet.de/loesungsarchiv/index.html#anker1_4_2_5
http://www.plusplanet.de/loesungsarchiv/index.html#anker1_4_2_6
http://www.plusplanet.de/loesungsarchiv/index.html#anker1_4_2_8


15.09.2021

  
Eine allgemeine, ausmultiplizierte Form (Normalform) einer ganzrationalen Funktion sieht so aus:

          β
f(x) = α·x  + ... + d·x³ + c·x² + b·x + a

Dabei gilt: Die Vorfaktoren a,b,c... und α sind reelle Zahlen
Die Exponenten 1,2,3 ... β sind natürliche Zahlen.

Fernverhalten
Für das Fernverhalten ganzrationaler Funktionen gilt:
• Falls α > 0 und  β gerade:

         x → ∞
   f(x) ‒‒‒‒‒‒‒→ +∞         z.B. f(x) = 1·x²

         x →-∞
   f(x) ‒‒‒‒‒‒‒→ +∞  

• Falls α > 0 und  β ungerade: z.B. f(x) = 2·x³

         x → ∞
   f(x) ‒‒‒‒‒‒‒→ +∞

         x →-∞
   f(x) ‒‒‒‒‒‒‒→ -∞

• Falls α < 0 und  β gerade: z.B. f(x) = -3·x²

         x → ∞    
   f(x) ‒‒‒‒‒‒‒→ -∞

         x →-∞
   f(x) ‒‒‒‒‒‒‒→ -∞
  
• Falls α < 0 und  β ungerade:
z.B. f(x) = -5·x³-100x²

         x → ∞
   f(x) ‒‒‒‒‒‒‒→ -∞

         x →-∞
   f(x) ‒‒‒‒‒‒‒→ +∞
  
Vorsicht: Beispiel f(x) = x·(1-x) = x - x² = -x² + x
Also: Höchster Exponent gerade, Vorfaktor negativ
         x → ∞
   f(x) ‒‒‒‒‒‒‒→ -∞

         x →-∞
   f(x) ‒‒‒‒‒‒‒→ -∞

Übung:
Untersuche auf: Nullstellen, Extrema, Wendepunkte,
Symmetrie, Fernverhalten
a) f(x) = -2x³ + 24x
b) f(x) = x·(x²-x)+2



01.09.2021
1. Wiederholung: Ableitungen Zeichnen: http://webspace.ship.edu/msrenault/GeoGebraCalculus/derivative_try_to_graph.html
2. Erste und zweite Ableitung identifizieren: http://webspace.ship.edu/msrenault/GeoGebraCalculus/derivative_first_second.html
3. Wo liegen die Wendepunkte? http://webspace.ship.edu/msrenault/GeoGebraCalculus/derivative_shape_of_a_graph.html



25.08.2021

Übungs-App zum Zeichnen von Ableitungen (braucht etwas Zeit, bis es geladen ist. Ich bezweifle, dass es auf dem Handy anständig funktioniert - aber auf einem Rechner macht es Spaß! Man kann nämlich berechnen lassen, wie genau man war.)
http://webspace.ship.edu/msrenault/GeoGebraCalculus/derivative_try_to_graph.html